If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-10b-23=0
a = 1; b = -10; c = -23;
Δ = b2-4ac
Δ = -102-4·1·(-23)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-8\sqrt{3}}{2*1}=\frac{10-8\sqrt{3}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+8\sqrt{3}}{2*1}=\frac{10+8\sqrt{3}}{2} $
| 2-3x+6x=2 | | -2a-3=-9 | | 6x-5=4x+35. | | v^2-8v-65=0 | | (2x-1)+31+90=108 | | i/5=-9 | | 9x/3–1=5 | | 5x-12°=3x+48° | | 5=9x/3–1 | | 12n-4=20 | | 27=(4+5)x | | 200=(x+9)10 | | 2x-6x+30-50+5x=180 | | n=113n+7 | | 54=(x+3)6 | | x^2+(x-2)^2=52 | | 9/30=5/x | | 1/5(2x-6)=3x+4 | | 13z-27=77 | | 3.5(x+2)=7. | | x2+8=X4 | | 7n-18=38 | | 3(x-1)+48+45=180 | | 9x–18=54. | | 9d-3d+6d-5=4d=0 | | 9=10+a/6 | | 2xx10=60 | | (x+2)^4/3=16 | | 60=-5(p-1) | | 60=–5(p–1) | | -28=6t-4 | | (100-p)(p-60)=0 |